

INTERNATIONAL JOURNAL OF NATURAL AND APPLIED SCIENCES (IJNAS), VOL. 2, NO. 1(2007); P. 107 – 115.

Deductive enterprise model (DEM): a better approach to enterprise modeling

E. E. Williams
*1

, P. C. Bassey
2
 and B. O. Akinkunmi

3

INTRODUCTION

 The existence of the correspondence problem resulting from the

legacy created independently by various systems that support

enterprise function has long been in existence (Gruninger and Fox,

1996). Enterprise models have been used in the design and operation

of enterprises, and it has so been in such a way that very few

organizations of significant sizes can operate without enterprise

models. It is also noticed that most information systems in use within

an enterprise incorporate a model of some aspect of its structure,

operations and/or knowledge. Enterprise model have different names,

irrespective of the fact that they represent the same concept. This

hinders communication among functions except they are further

translated. There is inconsistency during interpretation and use of the

knowledge. Above all, the cost of designing, building and

maintaining independent models for an organization will be high

(Uschold et al, 1998).

 Some of the systems that support most enterprise functions were

independently created and sometimes these functions did not share the

same representations. Lack of commonsense deductive capability

forced users to spend significant resources on programming every

new report or function that is required (Stadder, 1997). Currently,

most enterprise processes need to communicate directly with each

other thereby allowing the defined concepts to be shared amongst the

various units of the enterprise (Gruber, 1991). A common language

is needed to interpret these functions across the various units that may

need them. Enterprise modeling sets in to handle this problem

through enterprise integration (Gruninger and Fox, 1996), (Yu and

Mylpoulos, 1997).

The independence of most of these models does not allow

knowledge to be shared. These drawbacks/ problems faced by

business-process engineering brought about the introduction of a

Generic Enterprise Model (GEM) which is a library of generally

defined classes of objects that can be employed in defining a specific

enterprise. GEM is composed of the following:

(a) A set of object classes structured as a

taxonomy

(b) A set of well defined relations/meaning of an

object class linking the object to other

objects

(c) A set of attributes and semantics for each

object class.

 GEM has some benefits that make it outstanding. They include:

(i)The use of pre-defined object library which prevents the engineers

from starting from the scratch to create an enterprise model, rather

they quickly move on to model instantiation.

(ii) Provision of path for growth for enterprise modelers to follow,

thereby preventing an omission that will be noticed at a later period.

This is possible because other experienced modelers have traced the

path and kept for others to follow.

(iii) Provision of shared conceptualization which enable other parts of

the organization to understand what is presented in the enterprise

model.

(iv) The reduction in time and cost of modeling an enterprise is also

applicable.

ABSTRACT

This work is centered on the deductive enterprise model (DEM) as a better approach to enterprise modeling and integration of any information
system that will be able to deduce answers to questions that one would normally assume can be answered if one has a commonsense
understanding of the enterprise. Review of other models is given and the generic enterprise model (GEM) is viewed as a subset of the DEM.
Setbacks around these models are also discussed. Concepts about the educational (academic) system are defined and expressed using the First
Order Logic (FOL) as representational language that can represent the deductive capabilities in the enterprise of concern. Deductive rules

about these concepts were also expressed as axioms using the first order logic and they add up to the knowledge base as the inference
mechanism when further implemented using PROLOG programming language. Instances from sample ontology of the academic system were
used to further demonstrate the dynamic nature of the deductive enterprise model. Deductions made from these rules become updates to the
knowledge base as deductions drawn become new facts and are added to the database of facts.

*
Corresponding author. Email: edemwilliam@yahoo.com

Manuscript received by the Editor July 26, 2006; revised manuscript accepted September 21, 2006.
1
Department of Mathematics/Statistics & Computer Science, University of Calabar, PMB 1115, Calabar, Nigeria

2
Department of Mathematics/Statistics & Computer Science, University of Uyo, PMB 1017, Uyo, Nigeria

3
Department of Computer Science ,University of Ibadan, Ibadan, Nigeria.

© 2007 International Journal of Natural and Applied Sciences (IJNAS). All rights reserved.

107

Williams et al.

Deductive Enterprise Model (DEM) as a Derivative of GEM

The instantiated GEM becomes useful based on the

functions it can support, i.e. the categories of queries the GEM can

give answers to. There is need for an additional processing which

determines the answers to be provided. This is known as inference

capability which assumes heritance as a deductive mechanism.

 Although other approaches to developing knowledge-based systems

exist, the rule-based reasoning technique is used in representing our

domain knowledge. Rules are expressed in the form of an IF

<antecedent> THEN <consequent>, where the consequent is a form

of action or a conclusion that is deduced from the existing fact and

again added to knowledge base. A rule can have more than one

antecedent which are usually combined by a AND or OR operator.

Also, several conclusions can be drawn from one rule, in whose case

the antecedent simply compares an object with a possible value. The

object in question is simply a variable representing some physical

objects or states in the real world. A rule-based system consists of

three (3) components namely, knowledge base of rules, database of

facts and inference engine which uses the knowledge base of rules

and database of facts in deducting other facts as part of the system.

 We adopt the forward chain strategy to employ a deductive

approach since our field is considering starting from small number of

facts and very few rules, using them to deduce or come up with a

suitable course of action or conclusion. This technique is data-driven,

meaning that, reasoning will start from a set of data and ends up at the

goal (conclusion).

 The conclusion is reached and added to the fact database or

recommendations made when all the antecedent of one of the rules is

matched by the fact in the database, then the rule is triggered, and

then fired.According to Fox (1992), expert systems provide deep-level

processing. By deep level, we mean that a significant amount of

knowledge or search, that is, deductions, has to be performed to

provide a response to a query. To answer a query regarding the cause

of a machine malfunction, the expert system might have to reason

about the structure and behavior of the machine. It must have a

detailed model of the domain, and it can be unique to the specific

enterprise. Such systems tend to be costly to build and maintain and

are narrow in scope. Commonsense queries require that the

information system be able to deduce answers to questions that one

would normally assume can be answered if one has a commonsense

understanding of the enterprise. Such an understanding often

represents knowledge about the enterprise acquired over a relatively

short period of time, for example, three to nine months, and does not

denote knowledge of an expert nature. That is, the knowledge should

be broad and not deep and must support a tractable subclass of

queries. For example, knowledge of an organization’s structure, roles,

goals, and resources would enable the deduction of what resources a

person might allocate based on his/her role in the organization. It

could be argued that the majority of queries posed to a database are in

this third category: common sense. If GEMs were designed to support

commonsense queries, a significant portion of the management

information system (MIS) backlog could be done away with.

Commonsense query processing assumes a third level of processing

that we refer to as shallow-level processing. By shallow level, we

mean retrieval that requires a small number of deductions to answer

the query. For an enterprise model to support commonsense query

processing, it must provide a set of rules of deduction, that is, axioms.

For the works-for example, we would require an axiom stating that

works-for is transitive: x works-for y AND y works-for z IMPLIES x

works-for z.

 Fox and Gruninger (1998) view query language as a means of

interfacing with the enterprise model. They are of three types: factual,

expert and common-sense. The common-sense queries require that

the information system be able to deduce answers to questions that

one would normally assume can be answered if one has a common-

sense understanding of the enterprise. Again, for an enterprise model

to support commonsense query processing, the following sets of

deduction rules must be provided, that is, the axioms defining the

meaning of the relations and attributes in the object library. With the

axioms, the model would be able to make deductions. Such models

that include axioms and a deduction engine is known as a deductive

enterprise model (GEM). In other words, a GEM with deductive

capability is called a Deductive Enterprise Model (DEM) of which

this research is based on, meaning GEM is a subset of DEM.

 Considering the domain for this work, the in-depth knowledge or

understanding of the carrying capacity in each department of the

institution will be obtained by both the modeler (engineer) and the

user through the automatic support thereby enhancing their ability to

make future recommendations.

 More than a simple data model is needed in other to deduce what is

implied by the model. Axioms provide the basis of ontology’s

deductive capability. This supports enterprise operations by deducing

answers to commonly asked questions.

 Note that without the common-sense deductive capability, users

spend significant resources to program each new function that is

required. The field of ontological engineering has emerged over the

last five years to provide a more formal approach to enterprise

modeling which implies the construction of a DEM. DEM must be

flexible and consistent to elucidate the problem of different

representation of the same enterprise knowledge.

ENTERPRISE KNOWLEDGE REPRESENTATION

 Knowledge representation has to do with writing down in some

languages a communicative medium description or pictures that

108

Deductive enterprise model

corresponds in some salient ways to the world or some state of the

world. Knowledge representation is most fundamentally a substitute

used to enable an entity to determine consequences by thinking rather

than acting.

 First order logic (FOL) is the language used for representing the

domain knowledge. FOL is a formal language that deals with a

theoretical model of constructing its realities.

 The conceptualization of the domain knowledge was based on some

competency questions which will ascertain the efficiency of our

model. The competency questions are as stated in section two.

Enterprise objects/entities and relations

 The following objects/entities were identified in our domain of

discourse. classroom (room-id, capacity)

 Note that the classroom here might be lecture theatre, laboratory or

ordinary classroom. In any of case, there is a room-id and capacity

which gives the number space or seats the classroom can

accommodate.

course (course-id, dept-list, credit-unit, title, specialization)

 A course is defined by the following attributes: the course-id, list of

departments teaching it, credit units for the course, course title and

specialization.

instructor (instructor-id, rank, specialization-list)

 An instructor is identified by his/her unique instructor-id, rank and

the area of specialization of that instructor.

dept-level (dept-name, level, no)

 The department-level is defined by the name of the department

taking the course, level of students from the department offering the

course, and the number of students offering the course from that

department.

 The following predicates are also defined as relations:

canteach (instructor-id, course)

 An instructor who specializes in a particular field can teach certain

courses. The attributes include the instructor-id teaching the course

and the course he/she is teaching.

teaches (instructor-id, course)

 An instructor teaches a course. The attributes include the instructor-

id and the course he/she is teaching.

holds (course, room-id, time, duration)

 A course holds at a certain room-id at a particular time. And the

course will last for a certain number of hours (duration). Hence,

course code, room-id, time and duration are attributes of the holds

relation.

take-course (dept-name, level, course-id, status)

 This predicate is defined by the name of department taking the

course, the level of students offering the course and the identity of the

course being taken and the status that tells whether the course is

compulsory or required or elective.

Deductive Capabilities of Domain Rules

 From the above concepts definition, other predicates can be deduced

and in-turn used for further deductions. This is seen in the axioms

stated below. Each of the axioms starts with its literary meaning or

rule. The axioms were written in First Order Logic.

Axiom 1

If an instructor who specializes in a certain field teaches a certain

course and this field has relationship with course under study, then

the instructor can teach the course.

 i, c, r, sl, u.

instructor(I, r, sl)  course(c, dl, u, t, s) 

member(s,sl)  canteach(i,c)

where,

i = instructor_id,

r = rank of the instructor,

sl = specialization list,

c = course_id,

dl = department_list,

u = credit unit,

t = course title and

s = field of specialization.

 An instructor can teach a course, if he/she specializes in that

particular field. The axiom answers such questions as: can an

instructor teach a course? If an instructor specializes in the field, then

canteach is deduced.

Axiom 2

If a department takes a course and the department-level is known

with the number of students offering the course from that department

and course status is compulsory or required, then the number of

students in that department is added to the list of all the students

offering the course from various departments.

Case 1 This has to do with where only two departments are taken

into consideration.

d1, l1, c, s.

take_course(d1, l1, c, s)  dept_level(d1, l1, a) 

(s = Compulsory  s = Required)  total(c,[], 0)

 total (c,[d1], a).

where

 d1 = department’s name,

 l1 = level,

 c = course-id,

109

Williams et al.

 s = course status,

 a = constant holding the number of students offering

the course c, from the department.

Case 2 This involves more than two departments.

 d1, l1, c, s.

take_course(d1, l1, c, s)  (s=Compulsory 

 s = Required)  dept_level (d1, l1, a)  total(c,

dls, t)  total (c, dls1, t+a)  dls1 = append(dls,

d1)

Where

 d1 = name of the department taking the course,

 l1 = level in which the course belongs,

 c = course-id,

 s = course status,

 dls1 = updated list of departments offering the course,

 t = total number from the department offering the

course which when added to a gives the total number from all

departments offering the course.

 That the total number of students offering a course from a certain

department is needed to allocate that group of students to the

classroom that has the capacity equivalent to the number of students.

Axiom 3

If the total number of students is known from the list of all the

students offering a course and a certain department takes the course

and the department exists in the overall list, then the total number on

the list stands as the final total.

  c, dl, s.

total(c,dl,s)  (d,c,st. take_course(d, l, c, st) 

member(d, dl))  final_total(c,dl,s)

where

c = course-id,

dl = department level,

s = status of the course.

 From this axiom, the total number of departments offering the

course can be deduced.

Axiom 4

If a course holds at a certain room and the actual total of students

offering the course is known and the capacity of the classroom is also

known and the number of students is greater that the room capacity,

then the room is insufficient for the course to be handled in it.

c, r, t, d.

holds(c, r, t, d)  final_total(c, d, n) 

classroom(r,cap)

 (n > cap)  Insufficient(r,c).

Where

 c = course_id,

 r = room-id,

 t = time,

 cap = capacity of the room,

 n = number of students registering for the course.

 That a room is insufficient for a course is deduced from the total

number of students registering for the course and the capacity the

classroom can carry.

Axiom 5

If time for the second course is between the start time for the first

course and the start time plus duration OR the time for the first

course is between the start time of the second course and start time

plus duration, then time overlap occurs.

  t, t1, d, d1.

 ((t  t1  t+d)  (t1  t  t1+d1))

  overlap(t, t1).

where

t = time for the first course

 t1 = time for the second course

 d = duration for the first course

 d1 = duration for the second course.

This axiom reports that there is overlap when two courses are slated

for the same time t and t1 or the duration for one of the courses

having to coincide with the time of the other course.

Axiom 6

If a course is schedule to hold at a certain room, at a certain time and

will last for some time and another course is also scheduled to holds

at the same room, at a certain time and duration, and the time for the

second course overlap with that of the first then there is venue clash.

 c, t, r, d, c1, t1, d1.

holds(c, r, t, d)  holds(c1, r, t1, d1) ^

overlap(t, t1) .clash(c,c1).

where

c = course-id,

 t = time,

d = duration of course,

r = room-id,

c1 = course offered by another department

d1 at time t1 and at the same room-id, r.

 This axiom states that there is a venue clash among the courses

taken by these departments with the same room-id, and if the time

chosen by concerned departments overlaps.

110

Deductive enterprise model

Axiom 7

If a department takes a course and the same department takes

another course and both courses holding at certain classrooms and at

certain times, and the time scheduled for the two courses overlaps,

then there is time clash.

 d, l, c, s, c1, s1, r, t, dr, t1, d1. take_course(d, l,

c, s)  take_course(d1, l, c1, s1) 

d=d1 ^ holds(c, r, t, dr)  holds(c1, r1, t1, dr1) ^

overlap(t, t1)  clash(c,c1).

where

d, d1 = department’s name,

I = level,

c = course-id,

s = status of course,

r = room-id,

dr = duration of course.

 This axiom reports the occurrence of time clash between two

courses offered by a department, and both courses holding at the same

time.

Axiom 8

If an instructor teaches a course and also teaches another course and

both courses holding at different venue and at specific time and

duration, and the time scheduled for the two courses overlaps then

there is lecturer clash.

 i, c, r, t, d, i1, c1, r1, t1, d1.

teaches(i,c)  teaches(i1, c1)  holds(c, r, t, d) 

holds(c1, r1, t1, d1)  (i = i1) ^ overlap(t, t1)

 clash(c,c1).

where

i = instructor-id,

c = course-id,

t = time,

d = duration of course,

r = room-id,

c1 = course offered by another department

d1 at time t1 and at the same room-id,

r.1

 This axiom tells of lecturer clash when the time scheduled for two

courses taught by the same lecturer overlaps.

Axiom 9

If an instructor teaches a course and also teaches another course and

the total credit units taught by this instructor is known and is greater

than 8 credit units, then the instructor has excess load.

 i, c, cu, d, t, s.

teaches(i, c)  course(c, d, cu, t, s)  teaches(i, c) 

course(c1, d1, cu1, t1, s1)  credit_total(I, dl, b)  (b > 8)

 excessload(i).

where

i = instructor-id,

c = course-id taught by the instructor,

d = department taking the course,

cu = credit unit for the course,

t = time scheduled for the course

s = status of the course.

 This axiom checks the total credit unit (load) taken by each

lecturer to know whether he/she has excess workload.

Derivation of PROLOG clauses from logical axioms

 To add to these predicates which are facts in the knowledge based,

certain rules are given for further deductions to be made and the result

of these deductions, added to the knowledge based as facts. Such

rules were highlighted in our axioms given in section 2.5. The

implementation of these axioms is given in the corresponding

PROLOG code given below. It’s important to note that PROLOG

starts its implementation from the goal. To confirm that the goal is

true, all other facts or clauses must be satisfied. Once the clauses

have been searched for and found to exist in the knowledge based, the

goal is true and added as fact in the knowledge based also, and we can

say that a deduction have just been made.

 The axioms have been implemented in PROLOG and both

the first order logic and the corresponding PROLOG versions are

highlighted below.

1. x,l. x  (x)  x(y,l) [FOL]

member(X,[X|_]).

member(X,[Y|L]):- member(X,L). [PRO]

 This PROLOG implementation uses the member predicate to check

and ensure that x is in the list L, then it returns true for the predicate.

2. t,t1,d,d1. (t  t1  t+d)  (t1  t  t1+d1) [FOL]

overlap(T,Dr,T1,Dr1):- T =<T1, T1<(T + Dr);

T1=<T, T<(T1 + Dr1).[PRO]

 This rule returns true for overlap between two slated time for

probably two different courses considering their duration and if one

coincides with the other, then overlap is true, else it returns false.

3.  i, c, r, sl, u.

instructor(I, r, sl)  course(c, dl, u, t, s) 

member(s,sl)  canteach(i,c) [FOL]

 canteach(I,C):- instructor(I,R,S), course(C,Dl,U,T,Sl),

 member(S,Sl). [PRO]

111

Williams et al.

This rule adds that an instructor can teach a course if probably the

instructor is known to exist and the course in question is also taken by

a certain department and the area of specialization of that instructor is

a member of the specialization list of the course.

4. d1, l1, c, s.

take_course(d1, l1, c, s)  dept_level(d1, l1, a) 

(s = Compulsory  s = Required)  total(c,[], 0)

 total (c,[d1], a). [FOL] total([],0).

total([Number|Numbers],Sum):-

total(Numbers,Sum1),

Sum is Sum1 + Number. [PRO]

This returns x if x is added to an empty list or adds x to y returning the

total of the two.

5.  d1, l1, c, s.

take_course(d1, l1, c, s)  (s=Compulsory 

 s = Required)  dept_level (d1, l1, a)  total(c,

dls, t)  total (c, dls1, t+a)  dls1 = append(dls,d1)

 [FOL]

cutotal(_,L,S):-

cutotal(_,L,0,S).

cutotal(_,[],S,S).

cutotal(I,[Cu|Credit1],Psum,Tsum1):-

teaches(I,C),

course(C,D,Cu,T,S),

Npsum is Psum +Cu,

cutotal(I,Credit1,Npsum,Tsum1). [PRO]

 In a situation where more than one course are taught by a lecturer,

this adds the credit unit of all the courses taught by the lecturer

together.

6.  c, dl, s.

total(c,dl,s)  (d,c,st. take_course(d, l, c, st) 

member(d, dl))  final_total(c,dl,s) [FOL]

sttotal(_,L,S):-

sttotal(_,L,0,S).

sttotal(_,[],S,S).

sttotal(_,[N|Num],Psum,Tnum):-

 take_course(D1,V,C,St),

 dept_level(D1,V,N),

 (St = compulsory;

 St = required),

 Npsum is Psum + N,

 sttotal(C,Num,Npsum,Tnum).

 [PRO]

 In a situation where more than one department offers a course, this

adds the number of registered students in all the departments together.

7. c, r, t, d.

holds(c, r, t, d)  final_total(c, d, n) 

classroom(r,cap)  (n > cap)  Insufficient(r,c).

[FOL]

insufficient_seat(R,C):-

holds(C,R,T,Du),

classroom(R,Capacity),

take_course(D,L,C,_),

dept_level(D,L,N),

N>Capacity. [PRO]

 This rule checks for any slated course where the capacity of the

classroom is not sufficient for the number of students that register for

the course.

8.  c, t, r, d, c1, t1, d1.

holds(c, r, t, d)  holds(c1, r, t1, d1) ^((t  t1 

t+d)  (t1  t  t1+d1)) .clash(c,c1). [FOL]

clash(C,C1):-

holds(C,R,T,Dr) ,

holds(C1,R,T1,Dr1),

overlap(T,Dr,T1,Dr1).

 [PRO]

This returns true for an occurrence of a time clash.

9.  d, l, c, s, c1, s1, r, t, dr, t1, d1.

take_course(d, l, c, s)  take_course(d1, l, c1, s1)

 d=d1 ^ holds(c, r, t, dr)  holds(c1, r1, t1, dr1)

^((t  t1  t+dr)  (t1  t  t1+dr1))

 clash(c,c1).[FOL]

clash(C,C1):-

take_course(D,L,C,S),

take_course(D1,L,C1,S1),

 D is D1,

 holds(C,R,T,Dr),

 holds(C1,R1,T1,Dr1),

 overlap(T,Dr,T1,Dr1).

 [PRO]

 This adds that a venue clash has taken place between two groups of

people handling different course.

10.  i, c, r, t, d, i1, c1, r1, t1, d1.

teaches(i,c)  teaches(i1, c1)  holds(c, r, t, d) 

holds(c1, r1, t1, d1)  (i = i1)

^overlap(t,dr,t1,dr1) clash(c,c1). [FOL]

clash(C,C1):-

teaches(I,C),

teaches(I1,C1),

holds(C,R,T,Dr),

holds(C1,R1,T1,Dr1),

I is I1,

112

Deductive enterprise model

overlap(T,Dr,T1,Dr1). [PRO]

 This adds that there is a lecturer clash, where a lecturer is found

wanting in two different classes at the same time.

11.  i, c, cu, d, t, s.

 teaches(i, c)  course(c, d, cu, t, s)  teaches(i, c) 

 course(c1, d1, cu1, t1, s1)  credit_total(I, dl, b)  (b > 8)

  excessload(i).

 [FOL]

excessload(I):-

teaches(I,C),

course(C,D,Cu,T,S),

teaches(I,C1),

course(C1,D1,Cu1,T1,S1),

C\=C1, cutotal(I,[Cu,Cu1],B), B>8. [PRO]

This adds to the knowledge based the fact that an instructor happens to

handle more course than he/she should carry.

Analysis of the DEM

 From the above PROLOG codes, one can pose queries that can

answer the earlier stated competency questions. Below are example

of these competency questions and the query posed and the result

from the PROLOG system.

 Can lecturer A teach course X?

The query, canteach(A,B)., is posed with A and B being variables and

PROLOG searches the knowledge_base for the possibilities which

appear on our result screen. This tells us that akinkunmi is qualified

to teach the course csc311 and csc101. In the same way okorie can

also teach bio414.

 One may also want to know the courses that a particular lecturer can

teach or the qualified lecturer to teach a particular course. Posing the

queries in the result screen tells us the efficiency of our model by

answering the competency question:

Is lecturer A qualified to teach course Y?

Questions like: Is there any occurrence of clash between two courses?

What type of clash is it? and which of the courses are involved in the

clash?, are also answered when posing some queries like the ones in

the result screen below

When one wants to know whether a particular lecturer or instructor

has excess workload, queries like the one given in the result screen

below answers the question: Does a particular lecturer has excess

workload? The system gives ‘Yes’ or ‘No’ as the answer.

113

Williams et al.

The next query posed is the one that determines whether the capacity

of a classroom is sufficient for a particular group of students offering

a course.

Another instance of queries posed to this rule is when the classroom

and the course is known, then one can directly ask whether there is

insufficient seat and the system will tell by saying ‘Yes’ or ‘No’.

The above result screens handling the insufficient_seats predicate give

answers to competency questions like:

Is a classroom capacity sufficient for the course allocated?

Are there courses allocated to classrooms where seats are not enough

for the number of students registered for the course?

The above sample queries and results are obtained when testing the

efficiency and competence of this research model.

CONCLUSION

 The deductive enterprise model for the university academic system

(University of Ibadan) was given. With the formalization of the

university academic system (carrying capacity), most enterprise

control and managerial problems of knowing whether to increase the

number of students to be enrolled in a programme/department, or

increase the number of lecturers employed or to build new structures

can be tackled. This is not peculiar to academic systems only but

could be extended to other administrative processes within the

university or other enterprises as a whole. Issues like planning of

examination venue can be done with the help of our model with little

enhancement to the ontology. The introduction of an additional

processing determines the answers to be provided, called inference

capability assumes heritance as a deductive mechanism that lead to

the deductive enterprise model which differ from the generic

enterprise model with pre-defined object libraries.

 The following recommendations should be followed by the

concerned bodies. They include:

(i) Awareness should be created in the artificial intelligence (AI) field

from the introductory level of computer science learning in our

schools, colleges and universities. Probably, at the university level,

AI courses should be made compulsory.

(ii)The federal government, like other countries of the world, should

encourage AI computing by sponsoring AI research work within and

outside the country.

(iii) Universities should introduce the use of this theoretical model in

most planning and control decisions making by appropriate

bodies/units of the university.

(iv) NUC should enforce the use of this model by our universities.

REFERENCES

Copeland, J. (2000). What is Artificial Intelligence?

http://www.c.usfca.edu/www.AlanTuring.net/turing_archive/pages/R

ference%20Articles/what_is_AI/What%20is%20A108.html.

Fadel, F. G.; Fox, M. S.; and Gruninger M. (1994). A Generic

 Enterprise Resource Ontology. In: Proceedings of the 3rd IEEE

 Workshop on Enabling Technologies: Infrastructure for

 Collaborative Enterprises, Morgantown, West Virginia.

Fox, M. S. (1992). The TOVE Project Towards a Common-Sense

 Model of the Enterprise. Toronto, Ontario.

Fox, M. S., Barbuceanu, M, Gruninger, M. and Lin, J. (1997). An

 Organization Ontology for Enterprise Modeling. Enterprise

 Integration Laboratory, Department of Mechanical and Industrial

 Engineering, University of Toronto, Canada.

 http://www.eil.utoronto.ca/enterprise-modelling /papers.org

 prietula-23aug97.pdf

114

http://www.c.usfca.edu/www.AlanTuring.net/turing_archive/pages/Reference%20Articles/what_is_AI/What%20is%20A108.html
http://www.c.usfca.edu/www.AlanTuring.net/turing_archive/pages/Reference%20Articles/what_is_AI/What%20is%20A108.html
http://www.eil.utoronto.ca/enterprise-modelling%20/papers.org%20%20%20%20%20%20%20prietula-23aug97.pdf
http://www.eil.utoronto.ca/enterprise-modelling%20/papers.org%20%20%20%20%20%20%20prietula-23aug97.pdf

Deductive enterprise model

Fox, M. S., Chionglo, J. F. and Fadel, F. G. (1993). A common-sense

 model of the enterprise, Toronto, Ontario, Canada. In :Proceedings

 of the 2nd Industrial Engineering Research Conference:425-

 429.

Fox, M., Gruninger, M. and Zhan, Y. (1993). Enterprise Engineering:

 An Information Systems Perspective. In: Proceedings of the 3rd

 Industrial Engineering Research Conference (1994), Atlanta GA.

Galton, A (1990). Logic for Information Technology, Paper Edition.

 John Wiley and Sons Publishers, New York.

Gomez-Perez, A, Garcia-Pinar, J. M., Fernandez, M. and Blazquez,

 M. (2005). Building Ontologies at the Knowledge Level using the

 Ontology, Design Environment. Madrid, Spain.

Gruber, T. R. (1991). The Role of Common Ontology in Achieving

 Sharable, Reusable Knowledge Bases. In: Principles of

 Knowledge Representation and Reasoning: Proceedings of the

 2ndInternational Conference, (J. A. Allen, R. Fikes, & E.

 Sandewall Eds.)M.A. Morgan Kaufmann ,Cambridge, : 601-602.

Gruninger, M. and Fox, M. S. (1996). The Logic of Enterprise

 Modeling, modeling and Methodologies for Enterprise

 Integration, (P. Bernus and L-Nemes Eds.), Chapman and Hall

 Cornwall, Great Britain.

Guarino, N. (1995). Formal Ontology, Conceptual Analysis and

 Knowledge Representation. In: International Journal of Human

 Computer Studies.(Guarino, N. and Poli, R Eds): 625-

 640.

Guide to Prolog Programming.

 http://www.ktiml.mff.cuni.cz/~bartak/prolog/first-steps.html.

Stadder, J. (1997). Towards a framework for enterprise modeling and

 integration. http://www.aiai.ed.ac.uk/project /enterprise/

Kim, H. M., Fox, M. S., Gruninger, M. (1995). An Ontology of

 Quality for Enterprise Modeling. Department of Industrial

 Engineering, University of Toronto, Toronto, Ontario, Canada.

Kriz, J. and Sugaya, H. (1989). Logic Programming for Industrial

 Applications in Concepts and Characteristics of Knowledge-Based

 Systems. Elsevier Science publishers, North Holland.

Locke, C. (1999). Common Knowledge or Superior Ignorance.

 http://www.psych.utoronto.ca/~reingold/courses/ai/cyc.html.

Noy, N. F. and McGuinness D. L.(2003). Ontology Development 101:

 A Guide to Creating Your First Ontology, Stanford University,

 Stanford, CA.

http://protege.stanford.edu/publications/ontologydevelopm

 nt/ontoloy101-noy-mcguinness.pdf

Porto, A. (1989). A framework for deducing useful answers to queries

 in Concepts and Characteristics of Knowledge-Based Systems.

 Elsevier publishers, North Holland.

Prolog Programming Language.

http://www.engin.umd.umich.edu/CIS/course.des/cis400/prolog/prol

 g.html

Prolog Programming Tutorial I – Overview.

http://www.cse.cuhk.edu.hk/~csc4510/prolog/tutorial-1/1.html

Tham, K.D., Fox, M. S., Gruninger, M. (1994). A cost ontology for

 enterprise Modeling. Department of Industrial Engineering,

 University of Toronto, Ontario, Canada.

University of Ibadan Academic Calendar, 1999-2002, University

 Ibadan press, Ibadan Nigeria.

University of Ibadan Faculty of Science Prospectus for 2005/2006 and

 2006/2007 session, University of Ibadan Press, Ibadan.

Uschold, M., King, M, Moralee, S. and Zorgios, Y. (1998) The

 Enterprise Ontology The Knowledge Engineering Review , Vol.

 13, Special Issue on Putting Ontologies to Use.

Yu, E. S. K. and Mylpoulos, J. (1997). Modeling Organizational

 Issues for Enterprise Integration. University of Toronto, Toronto,

 Ontario, Canada. http://www.fis.utoronto.ca/~yu

115

http://www.ktiml.mff.cuni.cz/~bartak/prolog/first-steps.html
http://www.aiai.ed.ac.uk/project%20/enterprise/
http://www.psych.utoronto.ca/~reingold/courses/ai/cyc.html
http://protege.stanford.edu/publications/ontologydevelopm%20%20%20%20%20%20%20%20nt/ontoloy101-noy-mcguinness.pdf
http://protege.stanford.edu/publications/ontologydevelopm%20%20%20%20%20%20%20%20nt/ontoloy101-noy-mcguinness.pdf
http://www.engin.umd.umich.edu/CIS/course.des/cis400/prolog/prolog.html
http://www.engin.umd.umich.edu/CIS/course.des/cis400/prolog/prolog.html
http://www.cse.cuhk.edu.hk/~csc4510/prolog/tutorial-1/1.html
http://www.fis.utoronto.ca/~yu

